

GEOMETRY (COMMON CORE)

FACTS YOU MUST KNOW COLD FOR THE REGENTS EXAM

Notes to the Student

What is this? How do I use it to study?

Welcome to the "Geometry (Common Core) Facts You Must Know Cold for the Regents Exam" study guide! I hope that you find this guide to be an invaluable resource as you are studying for your Geometry Regents examination. This guide holds the essential information, formulas, and concepts that you must know in order to pass, or even master, your Regents exam! Over 200 hours have been put into the development of this study guide - from the clipart, to formatting, and from the colors to the mathematical theorems and concepts themselves, this packet has it all for you, the student and/or teacher! This study guide is specifically designed for students but can be used by teachers to ensure that there are no gaps in their curriculum. So, students, how do you use this to be incredibly successful? First and foremost, you need to know this stuff cold. There are no exceptions - you need to memorize and understand the material presented in this study guide. If you don't know the basics, then how are you going to complete practice exams? You can't. You need to take one step at a time; this is the first step. After you have read through these concepts and theorems several times, it's time to try an administered Geometry Regents exam. For your first attempt, I recommend that you have this study guide handy as a reference guide. If you're stuck on a question, consult this guide to see what concept or theorem you need to apply to the problem. This method of getting stuck on a question, consulting this study guide, and finding the correct theorem helps your mind grow and retain these mathematical concepts. If you are still stuck, then visit www.nysmathregentsprep.com and watch our fully explained regents exam videos in Geometry. We have all exams available! I wish you all of mathematical success! If you have any questions, feel free to contact me at tclark@nysmathregentsprep.com. Good luck!

Notes to the Teacher What's new to this edition?

This is the fourth edition of the "Geometry (Common Core) Facts You Must Know Cold for the Regents Exam", published in the spring of 2018 as a black \& white friendly version. If you are familiar with the previous versions, you may notice some minor changes. It was discovered that a few topics were missing from the previous edition. A listing shown below indicates the missing topics from the third edition that have been added in the fourth edition:
$\checkmark \quad$ Speed and average speed formulas from Algebra 1
\checkmark Coordinate geometry proof properties for quadrilaterals
In addition to these topics, formatting was updated, diagrams were improved, and all typos that we were informed about were corrected. We hope that you find this study guide to be an invaluable resource for you and your students. We encourage you to make photo copies and distribute this to all of your students. If you teach other regents level courses such as Algebra 1 and Algebra 2 (and eventually AP Calculus), visit our website at www.nysmathregentsprep.com to download those study guides too! If you have any questions, comments, or suggestions, please don’t hesitate to contact me at tclark@nysmathregentsprep.com.

Like what we do?

NYS Mathematics Regents Preparation is a non-for-profit organization. We are dedicated to enhance the learning for all mathematics students. This organization cannot operate without your help! Consider becoming a patron of NYS Mathematics Regents Preparation. With your support, we can publish more material on our website and YouTube, as well as expand our services into AP Calculus AB \& BC, AP Statistics, SAT \& ACT Prep, and more! Please visit https://www. patreon.com/nysmathregentsprep to make a donation today!

Dedication

I would like to dedicate this study guide to the following mathematics teachers of Farmingdale High School, who have inspired me every step of the way to fulfil my goal of becoming a mathematics teacher: Mrs. Mary-Elena D’Ambrosio, Mrs. Laura Angelo-Provenza, Mrs. Louise Corcoran, Mrs. Efstratia Vouvoudakis, Mr. Scott Drucker, and Mr. Ed Papo. Other teachers who have also inspired me include Mrs. Jacquelyn Passante-Merlo and Mrs. Mary Ann DeRosa of W. E. Howitt Middle School, and Ms. Elizabeth Bove of Massapequa High School.
I would especially like to thank Mrs. Mary-Elena D’Ambrosio and Mrs. Laura Angelo-Provenza for their suggestions and advice as to how to improve this fourth edition of the "Geometry (Common Core) Facts You Must Know Cold for the Regents Exam". Their input was invaluable.

[^0]
ANGLE, SEGMENT, \& TRIANGLE RELATIONSHIPS \& COORDINATE GEOMETRY

Polygons - Interior/Exterior Angles

Sum of Interior Angles: $180(n-2)$
Each Interior Angle of a Regular Polygon:

$$
\frac{180(n-2)}{n}
$$

Sum of Exterior Angles: 360°
Each Exterior Angle: $\frac{360}{n}$

Triangles

Classifying Triangles

Sides:

Scalene: No congruent sides
Isosceles: 2 congruent sides
Equilateral: 3 congruent sides
Angles:
Acute: All angles are $<90^{\circ}$
Right: One right angle that is 90°
Obtuse: One angle that is $>90^{\circ}$
Equiangular: 3 congruent angles (60°)
All triangles have 180°
Exterior Angle Theorem:
The exterior angle is equal to the sum of the two non-adjacent interior angles.

Midsegment: a segment that joins two midpoints
> Always parallel to the third side
$>\frac{1}{2}$ the length of the third side
$>$ Splits the triangle into two similar triangles

Coordinate Geometry

Slope-Intercept Form of a Line: $y=m x+b$ where m is the slope and b is the y-intercept. Point-Slope Form of a Line: $y-y_{1}=m\left(x-x_{1}\right)$ where m is the slope, and x_{1} and y_{1} are the values of a given point on the line.
Slope Formula: $m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Slopes:

> Parallel lines have the same slope
> Perpendicular lines have negative reciprocal slopes (flip the fraction \& change the sign)
> Collinear points are points that lie of the same line.
Midpoint Formula: $\boldsymbol{M}=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Distance Formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Segment Ratios to Partition Line Segments:

$$
\frac{x-x_{1}}{x_{2}-x}=\text { Given Ratio } \quad \frac{y-y_{1}}{y_{2}-y}=\text { Given Ratio }
$$

Triangle Inequality Theorems

$>$ The sum of 2 sides must be greater than the third side
> The difference of 2 sides must be less than the third side
> The longest side of the triangle is opposite the largest angle
$>$ The shortest side of the triangle is opposite the smallest angle

Isosceles Triangle

$>2 \cong$ sides and $2 \cong$ base angles
> The altitude drawn from the vertex is also the median and angle bisector
> If two sides of a triangle are \cong, then the angles opposite those \cong sides are \cong

Parallel Lines

Alternate interior angles are congruent

Alternate exterior angles are congruent

Corresponding angles are congruent

Same-side interior angles are supplementary

Side - Splitter Theorem

If a line is parallel to a side of a triangle and intersects the other two sides, then this line divides those two sides proportionally.

TRANSFORMATIONAL GEOMETRY

Rigid Motion: a type of transformation that preserves distance, congruency, angle measure, size, and shape.

Composition of Transformations

When you see " \circ ", work from right to left.

The example shows a translation to the right by three units and down by four units, followed by a rotation of 90 degrees.

CIRCLES
Circle Definition: A 2-dimensional shape made by drawing a curve that is always the same distance from the center.
Circle Equations

$$
\begin{gathered}
\text { General/Standard Equation of a Circle: } \\
\boldsymbol{x}^{2}+\boldsymbol{y}^{2}+\boldsymbol{C} \boldsymbol{x}+\boldsymbol{D} \boldsymbol{y}+\boldsymbol{E}=\mathbf{0} \\
\text { where } C, D \text {, and } E \text { are constants. }
\end{gathered}
$$

Center - Radius Equation of a Circle:

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

where (h, k) is the center and r is the radius.

Completing the Square

The method of "completing the square" is used when factoring by the basic "Trinomial Method", or "AM" method cannot be applied to the problem. The completing the square method is commonly used in geometry to express a general circle equation in center-radius

```
Review of Factoring
The order of Factoring:
        Greatest Common Factor (GCF)
    Difference of Two Perfect Squares (DOTS)
    Trinomial/"AM Method" (TRI)
GCF:
    \(a b+a c=a(b+c)\)
DOTS:
    \(x^{2}-y^{2}=(x+y)(x-y)\)
TRI:
    \(x^{2}-x+6 »(x+2)(x-3)\)
```


form.

Example: Express the general equation $x^{2}+4 x+y^{2}-6 y-12=0$ in
center-radius form.

$$
\begin{gathered}
x^{2}+4 x+y^{2}-6 y-12=0 \\
x^{2}+4 x+y^{2}-6 y=12 \\
x^{2}+4 x+\ldots+y^{2}-6 y+\ldots=12+\ldots+\ldots \\
x^{2}+4 x+\mathbf{4}+y^{2}-6 y+\mathbf{9}=12+\mathbf{4}+\mathbf{9} \\
(x+2)(x+2)+(y-3)(y-3)=25 \\
(x+2)^{2}+(y-3)^{2}=25 \\
\text { Formula: }\left(\frac{b}{2}\right)^{2}
\end{gathered}
$$

Steps:

1) Determine if the squared terms have a coefficient of 1
2) If there is a constant/number on the left side of the equal sign, move that constant to the right side
3) Insert "boxes" or "blank spaces" after the linear terms to acquire a perfect-square trinomial
4) Take half of the linear term(s) and square the number. Insert this number on both the left and right sides
5) Factor using the "trinomial method"
6) Write your equation

Graphing Circles

Steps:

1) Determine the center and the radius
2) Plot the center on the graph
3) Around the center, create four loci points that are equidistant from the center of the circle
4) Using a compass or steady freehand, connect all four points
5) Label when finished

Example: Graph $(x-2)^{2}+(y+3)^{2}=9$
The center is the point $(2,-3)$
The radius is 3

Angle Relationships in a Circle

Central Angle:
$\Varangle x=\widehat{A B}$

Inscribed Angle:
$\Varangle x=\frac{1}{2} \widehat{A B}$

Tangent-Chord Angle:

$$
\Varangle x=\frac{1}{2} \widehat{A B}
$$

Two Chord Angles:
$\Varangle x=\frac{\overline{\operatorname{Arc}_{1}}+\overline{A r C_{2}}}{2}$

A tangent is perpendicular to its radius, forming a 90° angle

An angle that is inscribed in a semicircle equals 90°

If a quadrilateral is inscribed in a circle, then its opposite angles $=180^{\circ}$

Segment Relationships in a Circle

(Part)(Part)=(Part)(Part)

$$
(a)(b)=(c)(d)
$$

If $\overline{A B} \cong \overline{C D}$, then $\widehat{A B} \cong \widehat{C D}$

If $\overline{A B} \| \overline{D C}$, then $\widehat{A D} \cong \widehat{B C}$ Parallel chords intercept congruent arcs
$(W)(E)=(W)(E)$ (Whole)(External)=(Whole)(External)
$(b)(\boldsymbol{a})=(\boldsymbol{d})(\boldsymbol{c})$
$(W)(E)=(T)^{2}$
(Whole)(External)=(Tangent) ${ }^{2}$
$(c)(b)=(a)^{2}$

If a diameter/radius is perpendicular to a chord, then the diameter/radius bisects the chord and its arc.

Circles (Con't)
Area of a Sector $\quad A=\frac{1}{2} r^{2} \theta$

where A is the area of the sector, r is the radius, and θ is an angle in radians. -or-

$$
A=\frac{n}{360} \pi r^{2}
$$

where A is the area of the sector, n is the amount of degrees in the central angle,

3-D FIGURES

Cylinder

Sphere

Cavalieri's Principle: If two solids have the same height and the same cross-sectional area at every level. then the solids have the same volume.

Density Formulas:
Mass $=($ Density $) \cdot($ Volume $)$
Density $=\frac{(\text { Mass })}{(\text { Volume })}$

Sector Length

Cross Sections: a surface or shape that is or would be exposed by making a straight cut through something at one or multiple points.

© NYS Mathematics Regents Preparation || Revised Spring 2018 || www.nysmathregentsprep.com

QUADRILATERALS

The Quadrilateral Family Tree

The Quadrilateral Properties

Quadrilateral

\checkmark A quadrilateral is a four-sided polygon

Trapezoid

\checkmark at least one pair of parallel sides

Each figure inherits the properties of its parent

Formula: The length of the median of a trapezoid can be calculated using the following formula:

$$
\text { Median }=\frac{1}{2}\left(\text { Base }_{1}+\text { Base }_{2}\right)
$$

Isosceles Trapezoid

\checkmark each pair of base angles are congruent
\checkmark diagonals are congruent
\checkmark one pair of congruent sides (which are the called the legs. These are the non-parallel sides)

Parallelogram

\checkmark opposite sides are parallel
\checkmark opposite sides are congruent
\checkmark opposite angles are congruent
\checkmark consecutive angles are supplementary
\checkmark diagonals bisect each other
Rectangle
\checkmark all angles at its vertices are right angles
\checkmark diagonals are congruent

Rhombus

\checkmark all sides are congruent
\checkmark diagonals are perpendicular

\checkmark diagonals bisect opposite angles
\checkmark diagonals form four congruent right triangles
\checkmark diagonals form two pairs of two congruent isosceles triangles

Square

\checkmark diagonals form four congruent isosceles right triangles

COORDINATE GEOMETRY PROOFS WITH POLYGONS

How to prove Quadrilaterals

- To prove that a quadrilateral is a parallelogram, it is sufficient to show any one of these properties:
\checkmark Both pairs of opposite sides are parallel
\checkmark Both pairs of opposite sides are congruent
\checkmark Both pairs of opposite angles are congruent
\checkmark One pair of opposite sides are both parallel and congruent
\checkmark Diagonals bisect each other
- To prove that a parallelogram is a rectangle, it is sufficient to show any one of these:
\checkmark Any one of its angles is a right angle
\checkmark One pair of consecutive angles are congruent
\checkmark Diagonals are congruent

- To prove that a parallelogram is a rhombus, it is sufficient to show any one of these:
\checkmark One pair of consecutive sides are congruent
\checkmark Diagonals are perpendicular
\checkmark Either diagonal is an angle bisector

How to prove Triangles

- To prove that a given triangle is an isosceles triangle, it is sufficient to show that two sides are congruent.

- To prove that a given triangle is an equilateral triangle, it is sufficient to show that all three sides are congruent.

Remember - if there is a coordinate geometry proof on the regents, devise a plan, write it down, and use the coordinate geometry formulas shown in the
"Coordinate Geometry" section of this packet to prove some properties!

CONSTRUCTIONS
Copy a Line Segment

[^0]: © NYS Mathematics Regents Preparation. All rights reserved. No part of this document can be reproduced or redistributed within a paid setting, such as, but not limited to private tutoring and regents review classes, without the written permission from Trevor Clark, the sole owner and developer of NYS Mathematics Regents Preparation. For permission requests, please email him at tclark@nysmathregentsprep.com. Use without consent with or without credit is in direct violation of copyright law. This study guide however, is allowed to be photocopied and distributed to students, since it is considered "fair use" for educators. However, the logo, author, or copyright written on each page may not be tampered with, deleted, "whited-out", or blocked, as these actions would infringe on several copyright laws. These actions are strictly prohibited.

